We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Полимеры помогли увеличить ёмкость суперконденсаторов

Но при условии, что поры электрода больше 1 нм

Суперконденсатор — устройство, которое за несколько секунд может накопить и отдать заряд энергии. Он состоит из металлических электродов, погруженных в электролит. В своей новой модели учёные МИЭМ НИУ ВШЭ заменили типичный низкомолекулярный электролит на полиэлектролит и обнаружили негативный физический эффект: суперконденсаторы теряют емкость при размере поры электрода менее 1 нм. Теперь у инженеров появилась возможность создавать более мощные и эффективные устройства, подобрав особые условия для полиэлектролитов. Исследование опубликовано в журнале Physical Review E.

Суперконденсатор похож на аккумуляторную батарею, но, в отличие от неё, создан не для длительного питания, а для кратковременных и мощных импульсов энергии. Их часто используют как резервный источник питания в смартфонах, автомобилях и различных гаджетах. Например, в видеорегистраторах суперконденсатор поддержит заряд, чтобы завершить и сохранить видеозапись, если автомобиль заглохнет и основной источник энергии отключится. Суперконденсаторы меньше изнашиваются и в среднем служат на 5–10 лет дольше, чем аккумуляторы. Они эффективны при температурах от -40 до +65 °C, что в два раза превышает рабочий диапазон литий-ионного аккумулятора.

Структура суперконденсатора состоит из металлических электродов, погруженных в электролит — жидкость, в которой находятся свободные заряженные частицы, катионы и анионы. Например, поваренная соль — это тоже электролит, при растворении в воде она распадается на ионы Na+ и Cl-.

Заряд у суперконденсатора накапливается в двойном электрическом слое (ДЭС). Он образуется на границе сред между жидким электролитом и электродом, к которому подведён электрический потенциал.  Первый слой — сам электрод, а второй — ионы электролита, стягивающиеся к нему из-за сил электростатического притяжения.

Исследователи МИЭМ НИУ ВШЭ разработали математическую модель ДЭС, в которой заменили традиционные низкомолекулярные электролиты на полимерные. Полиэлектролиты помогают увеличить электрическую емкость — характеристику, которая показывает, сколько электроэнергии может накопить устройство. Это происходит благодаря тому, что заряженная полимерная цепь эффективнее притягивается к электроду, нежели низкомолекулярный электролит.

Низкомолекулярные электролиты — органические соли, кислоты и основания, катионы и анионы которых свободно перемещаются.

Полимерные электролиты (полиэлектролиты) — более сложные соединения, у которых ионы одного типа (скажем, катионы) сшиты в длинные полимерные цепи, а другого (анионы) — свободно перемещаются.

На модели исследователей впервые выяснилось, что если поры электрода слишком узкие (толщина меньше или равна 1 нанометру), то полимерные цепи электролита не могут зайти внутрь из-за электростатического отталкивания от стенок поры.

Можно провести бытовую аналогию с макаронами и дуршлагом. Если вы берете длинные и короткие макароны, то короткие проходят через дуршлаг лучше. Но чем дырки больше, тем больше длинных макарон может проскользнуть. Полимерные цепочки — как длинные макароны, которые очень сложно загнать внутрь узкой поры.

Юрий Будков
Один из авторов статьи, профессор МИЭМ НИУ ВШЭ

Подобный эффект не возникает у низкомолекулярных электролитов. Дело в том, что размер их иона всего 0,3–0,4 нм и при размере поры 1 нм он легко перемещается.

Используя полимеры, мы можем выиграть в электрической емкости, но при этом важно избежать негативных эффектов. Мы подобрали параметры, при которых полимер будет эффективно работать, и считаем, что грамотное применение полиэлектролитов позволит накапливать больше энергии.

Николай Каликин
Младший научный сотрудник МИЭМ НИУ ВШЭ

Суперконденсаторы применяют в промышленности, возобновляемой энергетике, робототехнике и даже в общественном транспорте. Например, некоторые электробусы используют суперконденсаторы, чтобы быстро зарядиться на остановке и двигаться до следующей.

Эта статья — часть большого исследовательского проекта. Мы развиваем методологию численного моделирования двойных электрических слоев на границе металл — электролит. Сейчас мы подготовили теоретическую базу, а в будущем планируем создать программу, которая позволит моделировать поведение ионов и проводить инженерные оценки дифференциальной электрической емкости. Это поможет инженерам, которые разрабатывают суперконденсаторы, глубже понять физико-химические процессы в двойных электрических слоях суперконденсаторов и создавать более мощные и эффективные устройства.

Юрий Будков
Один из авторов статьи, профессор МИЭМ НИУ ВШЭ

IQ

May 17, 2023