• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
vision

Машинное обучение повысило точность идентификации элементарных частиц на БАК

Исследователи Высшей школы экономики разработали метод, позволяющий с высокой точностью отличать разные типы элементарных частиц на Большом адронном коллайдере. Результаты исследования опубликованы в Journal of Physics.

Одна из нерешенных задач физики — преобладание вещества над антивеществом в нашей Вселенной. В первые доли секунд после Большого взрыва образовались вещество и антивещество. Физики пытаются понять, куда исчезло антивещество. Как предположил академик А.Д. Сахаров в 1966 году, в результате нарушения CP-инвариантности (симметрии частиц и античастиц) возник дисбаланс вещества и антивещества. После их аннигиляции (взаимоуничтожения) остались частицы.

Эксперимент LHCb (Large Hadron Collider beauty experiment) проводится для изучения B-мезонов, неустойчивых частиц, при распаде которых наиболее ярко проявляется асимметрия между веществом и антивеществом. Установка LHCb состоит из нескольких специализированных детекторов. Они включают в себя калориметры, которые измеряют энергию незаряженных частиц. Еще калориметры идентифицируют разные типы частиц: для этого проводится поиск и анализ кластеров энерговыделения. Однако, сигналы от двух типов фотонов — первичных и фотонов из распада π0 -мезона — легко перепутать. Ученые ВШЭ разработали метод, который позволит с высокой точностью различать их.

Авторы исследования применили искусственные нейронные сети и градиентный бустинг (алгоритм машинного обучения) для классификации кластеров энерговыделения.

«Мы взяли матрицу размером 5×5 с центром в точке с самым большим энерговыделением, - комментирует автор исследования, ведущий научный сотрудник Научно-учебной лаборатории методов анализа больших данных ВШЭ Федор Ратников. — Вместо того, чтобы самим анализировать специальные характеристики исходных данных, мы их сразу передали для анализа алгоритму. И машина смогла разобраться в них лучше человека».

Новый метод на основе машинного обучения в четыре раза повысил качество идентификации частиц в калориметре по сравнению с предыдущим — начальной интеллектуальной предобработкой данных. Алгоритм улучшил показатель кривой ошибок с 0,89 до 0,97 — чем выше это значение, тем качественнее работает классификатор. При эффективности идентификации первичных фотонов в 98% новый подход уменьшил поток ложных идентификаций событий с 60% до 30%.

Особенность предложенного метода в том, что он позволяет идентифицировать элементарные частицы без предварительного изучения особенностей анализируемого кластера. «Можно обрабатывать данные, не ограничиваясь нашими знаниями о свойствах идентифицируемых частиц, а предоставить это машинному обучению в надежде на то, что алгоритм найдет взаимосвязи, которые мы не рассматривали. Очевидно, у нас это получилось» — говорит Федор Ратников.

30 октября